{ "id": "math-ph/0510021", "version": "v2", "published": "2005-10-06T10:54:04.000Z", "updated": "2006-02-25T20:04:05.000Z", "title": "On Uniqueness of Gibbs Measures for $P$-Adic Nonhomogeneous $ł$-Model on the Cayley Tree", "authors": [ "Murod Khamraev", "Farrukh Mukhamedov", "Utkir Rozikov" ], "comment": "12 pages", "journal": "Lett. Math. Phys. 70(2004), 17--28", "categories": [ "math-ph", "math.MP" ], "abstract": "We consider a nearest-neighbor $p$-adic $\\l$-model with spin values $\\pm 1$ on a Cayley tree of order $k\\geq 1$. We prove for the model there is no phase transition and as well as the unique $p$-adic Gibbs measure is bounded if and only if $p\\geq 3$. If $p=2$ then we find a condition which guarantees nonexistence of a phase transition. Besides, the results are applied to the $p$-adic Ising model and we show that for the model there is a unique $p$-adic Gibbs measure.", "revisions": [ { "version": "v2", "updated": "2006-02-25T20:04:05.000Z" } ], "analyses": { "subjects": [ "46S10", "82B26", "12J12" ], "keywords": [ "cayley tree", "adic nonhomogeneous", "adic gibbs measure", "phase transition", "uniqueness" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s11005-004-3500-7" }, "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "inspire": 868075 } } }