{ "id": "math-ph/0509002", "version": "v6", "published": "2005-09-02T03:32:56.000Z", "updated": "2008-03-14T05:40:44.000Z", "title": "A Generalization of the Kepler Problem", "authors": [ "Guowu Meng" ], "comment": "The final version. To appear in J. Yadernaya fizika", "journal": "Physics of Atomic Nuclei (J. Yadernaya fizika), Vol. 71 (2008), 946-950", "categories": [ "math-ph", "math.MP" ], "abstract": "We construct and analyze a generalization of the Kepler problem. These generalized Kepler problems are parameterized by a triple $(D, \\kappa, \\mu)$ where the dimension $D\\ge 3$ is an integer, the curvature $\\kappa$ is a real number, the magnetic charge $\\mu$ is a half integer if $D$ is odd and is 0 or 1/2 if $D$ is even. The key to construct these generalized Kepler problems is the observation that the Young powers of the fundamental spinors on a punctured space with cylindrical metric are the right analogues of the Dirac monopoles.", "revisions": [ { "version": "v6", "updated": "2008-03-14T05:40:44.000Z" } ], "analyses": { "keywords": [ "generalization", "generalized kepler problems", "half integer", "right analogues", "fundamental spinors" ], "tags": [ "journal article" ], "publication": { "doi": "10.1134/S1063778808050256" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 694437 } } }