{ "id": "math-ph/0508007", "version": "v2", "published": "2005-08-01T22:45:14.000Z", "updated": "2006-04-06T07:06:06.000Z", "title": "On Mott's formula for the ac-conductivity in the Anderson model", "authors": [ "Abel Klein", "Olivier Lenoble", "Peter Müller" ], "comment": "29 pages, 1 figure; misprints corrected, references updated, Remark 3.2 on gauge equivalence added; to appear in the Annals of Mathematics", "journal": "Ann. Math. (2) 166, 551-579 (2007)", "doi": "10.4007/annals.2007.166.549", "categories": [ "math-ph", "math.MP" ], "abstract": "We study the ac-conductivity in linear response theory in the general framework of ergodic magnetic Schr\\\"odinger operators. For the Anderson model, if the Fermi energy lies in the localization regime, we prove that the ac-conductivity is bounded by $C \\nu^2 (\\log \\frac 1 \\nu)^{d+2}$ at small frequencies $\\nu$. This is to be compared to Mott's formula, which predicts the leading term to be $C \\nu^2 (\\log \\frac 1 \\nu)^{d+1}$.", "revisions": [ { "version": "v2", "updated": "2006-04-06T07:06:06.000Z" } ], "analyses": { "subjects": [ "82B44", "47B80", "60H25" ], "keywords": [ "anderson model", "motts formula", "ac-conductivity", "linear response theory", "fermi energy lies" ], "tags": [ "journal article" ], "publication": { "publisher": "Princeton University and the Institute for Advanced Study", "journal": "Ann. Math." }, "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.ph...8007K" } } }