{ "id": "math-ph/0506044", "version": "v1", "published": "2005-06-16T14:50:54.000Z", "updated": "2005-06-16T14:50:54.000Z", "title": "Symmetries of modules of differential operators", "authors": [ "Hichem Gargoubi", "Pierre Mathonet", "Valentin Ovsienko" ], "comment": "29 pages, LaTeX, 4 figures", "journal": "Journal of Nonlinear Mathematical Physics 12 (2005) 348-380", "categories": [ "math-ph", "math.DG", "math.MP" ], "abstract": "Let ${\\cal F}\\_\\lambda(S^1)$ be the space of tensor densities of degree (or weight) $\\lambda$ on the circle $S^1$. The space ${\\cal D}^k\\_{\\lambda,\\mu}(S^1)$ of $k$-th order linear differential operators from ${\\cal F}\\_\\lambda(S^1)$ to ${\\cal F}\\_\\mu(S^1)$ is a natural module over $\\mathrm{Diff}(S^1)$, the diffeomorphism group of $S^1$. We determine the algebra of symmetries of the modules ${\\cal D}^k\\_{\\lambda,\\mu}(S^1)$, i.e., the linear maps on ${\\cal D}^k\\_{\\lambda,\\mu}(S^1)$ commuting with the $\\mathrm{Diff}(S^1)$-action. We also solve the same problem in the case of straight line $\\mathbb{R}$ (instead of $S^1$) and compare the results in the compact and non-compact cases.", "revisions": [ { "version": "v1", "updated": "2005-06-16T14:50:54.000Z" } ], "analyses": { "subjects": [ "17B56" ], "keywords": [ "symmetries", "th order linear differential operators", "diffeomorphism group", "linear maps", "tensor densities" ], "tags": [ "journal article" ], "publication": { "doi": "10.2991/jnmp.2005.12.3.4", "journal": "Journal of Nonlinear Mathematical Physics", "year": 2005, "volume": 12, "number": 3, "pages": 348 }, "note": { "typesetting": "LaTeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005JNMP...12..348G" } } }