{ "id": "math-ph/0503062", "version": "v1", "published": "2005-03-26T18:40:58.000Z", "updated": "2005-03-26T18:40:58.000Z", "title": "Generalized coherent and squeezed states based on the $h(1) \\otimes su(2)$ algebra", "authors": [ "Nibaldo Alvarez-Moraga", "Veronique Hussin" ], "comment": "42 pages, 10 figures", "journal": "J.Math.Phys. 43 (2002) 2063-2096", "doi": "10.1063/1.1462858", "categories": [ "math-ph", "math.MP" ], "abstract": "States which minimize the Schr\\\"odinger--Robertson uncertainty relation are constructed as eigenstates of an operator which is a element of the $h(1) \\oplus \\su(2)$ algebra. The relations with supercoherent and supersqueezed states of the supersymmetric harmonic oscillator are given. Moreover, we are able to compute gneneral Hamiltonians which behave like the harmonic oscillator Hamiltonian or are related to the Jaynes--Cummings Hamiltonian.", "revisions": [ { "version": "v1", "updated": "2005-03-26T18:40:58.000Z" } ], "analyses": { "subjects": [ "42.50.Dv", "03.65.Fd", "02.10.De" ], "keywords": [ "squeezed states", "generalized coherent", "harmonic oscillator hamiltonian", "supersymmetric harmonic oscillator", "jaynes-cummings hamiltonian" ], "tags": [ "journal article" ], "publication": { "publisher": "AIP", "journal": "Journal of Mathematical Physics", "year": 2002, "month": "May", "volume": 43, "number": 5, "pages": 2063 }, "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable", "inspire": 609860, "adsabs": "2002JMP....43.2063A" } } }