{ "id": "math-ph/0412097", "version": "v1", "published": "2004-12-31T13:58:20.000Z", "updated": "2004-12-31T13:58:20.000Z", "title": "Scattering theory of discrete (pseudo) Laplacians on a Weyl chamber", "authors": [ "J. F. van Diejen" ], "comment": "31 pages, LaTeX", "journal": "American Journal of Mathematics 127, no. 2 (2005), 421--458", "doi": "10.1353/ajm.2005.0012", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "To a crystallographic root system we associate a system of multivariate orthogonal polynomials diagonalizing an integrable system of discrete pseudo Laplacians on the Weyl chamber. We develop the time-dependent scattering theory for these discrete pseudo Laplacians and determine the corresponding wave operators and scattering operators in closed form. As an application, we describe the scattering behavior of certain hyperbolic Ruijsenaars-Schneider type lattice Calogero-Moser models associated with the Macdonald polynomials.", "revisions": [ { "version": "v1", "updated": "2004-12-31T13:58:20.000Z" } ], "analyses": { "subjects": [ "47A40", "81U15", "33C52" ], "keywords": [ "weyl chamber", "scattering theory", "discrete pseudo laplacians", "ruijsenaars-schneider type lattice calogero-moser models" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.ph..12097V" } } }