{ "id": "math-ph/0412047", "version": "v1", "published": "2004-12-14T21:47:01.000Z", "updated": "2004-12-14T21:47:01.000Z", "title": "Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle", "authors": [ "Irina Nenciu" ], "comment": "38 pages", "categories": [ "math-ph", "math.CA", "math.MP", "nlin.SI" ], "abstract": "Nenciu and Simon found that the analogue of the Toda system in the context of orthogonal polynomials on the unit circle is the defocusing Ablowitz-Ladik system. In this paper we use the CMV and extended CMV matrices, respectively, to construct Lax pair representations for this system in the periodic, finite, and infinite cases.", "revisions": [ { "version": "v1", "updated": "2004-12-14T21:47:01.000Z" } ], "analyses": { "keywords": [ "unit circle", "orthogonal polynomials", "construct lax pair representations", "defocusing ablowitz-ladik system", "infinite cases" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.ph..12047N" } } }