{ "id": "math-ph/0412001", "version": "v1", "published": "2004-12-01T00:24:31.000Z", "updated": "2004-12-01T00:24:31.000Z", "title": "Wilson Polynomials and the Lorentz Transformation Properties of the Parity Operator", "authors": [ "Carl M. Bender", "Peter N. Meisinger", "Qinghai Wang" ], "doi": "10.1063/1.1870733", "categories": [ "math-ph", "math.MP" ], "abstract": "The parity operator for a parity-symmetric quantum field theory transforms as an infinite sum of irreducible representations of the homogeneous Lorentz group. These representations are connected with Wilson polynomials.", "revisions": [ { "version": "v1", "updated": "2004-12-01T00:24:31.000Z" } ], "analyses": { "keywords": [ "lorentz transformation properties", "parity operator", "wilson polynomials", "parity-symmetric quantum field theory transforms", "infinite sum" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }