{ "id": "math-ph/0410022", "version": "v1", "published": "2004-10-07T07:07:10.000Z", "updated": "2004-10-07T07:07:10.000Z", "title": "Elliptic operators on planar graphs: Unique continuation for eigenfunctions and nonpositive curvature", "authors": [ "S. Klassert", "D. Lenz", "N. Peyerimhoff", "P. Stollmann" ], "categories": [ "math-ph", "math.FA", "math.MP" ], "abstract": "This paper is concerned with elliptic operators on plane tessellations. We show that such an operator does not admit a compactly supported eigenfunction, if the combinatorial curvature of the tessellation is nonpositive. Furthermore, we show that the only geometrically finite, repetitive plane tessellations with nonpositive curvature are the regular $(3,6), (4,4)$ and $(6,3)$ tilings.", "revisions": [ { "version": "v1", "updated": "2004-10-07T07:07:10.000Z" } ], "analyses": { "subjects": [ "81Q10", "35J10", "82B44" ], "keywords": [ "elliptic operators", "nonpositive curvature", "planar graphs", "unique continuation", "repetitive plane tessellations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.ph..10022K" } } }