{ "id": "math-ph/0409007", "version": "v1", "published": "2004-09-03T19:37:29.000Z", "updated": "2004-09-03T19:37:29.000Z", "title": "Continuity with respect to Disorder of the Integrated Density of States", "authors": [ "Peter D. Hislop", "Frederic Klopp", "Jeffrey H. Schenker" ], "comment": "12 pages, LaTeX", "journal": "Ill. J. Math. 49 (2005), 893", "categories": [ "math-ph", "math.MP" ], "abstract": "We prove that the integrated density of states (IDS) associated to a random Schroedinger operator is locally uniformly Hoelder continuous as a function of the disorder parameter lambda. In particular, we obtain convergence of the IDS, as lambda tends to 0, to the IDS for the unperturbed operator at all energies for which the IDS for the unperturbed operator is continuous in energy.", "revisions": [ { "version": "v1", "updated": "2004-09-03T19:37:29.000Z" } ], "analyses": { "keywords": [ "integrated density", "continuity", "unperturbed operator", "random schroedinger operator", "disorder parameter lambda" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.ph...9007H" } } }