{ "id": "math-ph/0407007", "version": "v2", "published": "2004-07-06T09:18:29.000Z", "updated": "2004-10-08T13:33:27.000Z", "title": "On the monotonicity of scalar curvature in classical and quantum information geometry", "authors": [ "P. Gibilisco", "T. Isola" ], "comment": "20 pages, 2 .eps figures; (v2) section 2 rewritten, typos corrected", "doi": "10.1063/1.1834693", "categories": [ "math-ph", "math.MP" ], "abstract": "We study the statistical monotonicity of the scalar curvature for the alpha-geometries on the simplex of probability vectors. From the results obtained and from numerical data we are led to some conjectures about quantum alpha-geometries and Wigner-Yanase-Dyson information. Finally we show that this last conjecture implies the truth of the Petz conjecture about the monotonicity of the scalar curvature of the Bogoliubov-Kubo-Mori monotone metric.", "revisions": [ { "version": "v2", "updated": "2004-10-08T13:33:27.000Z" } ], "analyses": { "keywords": [ "quantum information geometry", "scalar curvature", "monotonicity", "bogoliubov-kubo-mori monotone metric", "quantum alpha-geometries" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }