{ "id": "math-ph/0406017", "version": "v1", "published": "2004-06-10T07:32:46.000Z", "updated": "2004-06-10T07:32:46.000Z", "title": "An isoperimetric problem for point interactions", "authors": [ "Pavel Exner" ], "comment": "LaTeX 2e, 10 pages", "journal": "J. Phys. A38 (2005), 4795-4802", "doi": "10.1088/0305-4470/38/22/004", "categories": [ "math-ph", "cond-mat.mes-hall", "math.MP", "quant-ph" ], "abstract": "We consider Hamiltonian with $N$ point interactions in $\\R^d, d=2,3,$ all with the same coupling constant, placed at vertices of an equilateral polygon $\\PP_N$. It is shown that the ground state energy is locally maximized by a regular polygon. The question whether the maximum is global is reduced to an interesting geometric problem.", "revisions": [ { "version": "v1", "updated": "2004-06-10T07:32:46.000Z" } ], "analyses": { "keywords": [ "point interactions", "isoperimetric problem", "ground state energy", "regular polygon", "interesting geometric problem" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }