{ "id": "math-ph/0405061", "version": "v2", "published": "2004-05-25T19:28:17.000Z", "updated": "2014-12-30T01:19:26.000Z", "title": "Almost Everywhere Positivity of the Lyapunov Exponent for the Doubling Map", "authors": [ "David Damanik", "Rowan Killip" ], "comment": "4 pages", "journal": "Commun. Math. Phys. 257 (2005), 287-290", "doi": "10.1007/s00220-004-1261-x", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "We show that discrete one-dimensional Schr\\\"odinger operators on the half-line with ergodic potentials generated by the doubling map on the circle, $V_\\theta(n) = f(2^n \\theta)$, may be realized as the half-line restrictions of a non-deterministic family of whole-line operators. As a consequence, the Lyapunov exponent is almost everywhere positive and the absolutely continuous spectrum is almost surely empty.", "revisions": [ { "version": "v1", "updated": "2004-05-25T19:28:17.000Z", "journal": null }, { "version": "v2", "updated": "2014-12-30T01:19:26.000Z" } ], "analyses": { "keywords": [ "lyapunov exponent", "doubling map", "positivity", "ergodic potentials", "whole-line operators" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Commun. Math. Phys." }, "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }