{ "id": "math-ph/0405010", "version": "v4", "published": "2004-05-04T14:47:36.000Z", "updated": "2006-07-23T11:14:23.000Z", "title": "Spectral Estimates and Non-Selfadjoint Perturbations of Spheroidal Wave Operators", "authors": [ "Felix Finster", "Harald Schmid" ], "comment": "33 pages, LaTeX, 3 figures, typo in Lemma 4.1 corrected (published version)", "journal": "J. Reine Angew. Math. 601 (2006) 71-107", "doi": "10.1515/CRELLE.2006.095", "categories": [ "math-ph", "gr-qc", "math.MP", "math.SP" ], "abstract": "We derive a spectral representation for the oblate spheroidal wave operator which is holomorphic in the aspherical parameter $\\Omega$ in a neighborhood of the real line. For real $\\Omega$, estimates are derived for all eigenvalue gaps uniformly in $\\Omega$. The proof of the gap estimates is based on detailed estimates for complex solutions of the Riccati equation. The spectral representation for complex $\\Omega$ is derived using the theory of slightly non-selfadjoint perturbations.", "revisions": [ { "version": "v4", "updated": "2006-07-23T11:14:23.000Z" } ], "analyses": { "keywords": [ "spectral estimates", "spectral representation", "oblate spheroidal wave operator", "slightly non-selfadjoint perturbations", "complex solutions" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "inspire": 649710, "adsabs": "2004math.ph...5010F" } } }