{ "id": "math-ph/0404045", "version": "v2", "published": "2004-04-19T16:03:06.000Z", "updated": "2004-11-25T16:57:04.000Z", "title": "On the refined 3-enumeration of alternating sign matrices", "authors": [ "F. Colomo", "A. G. Pronko" ], "comment": "Some comments and references added. To appear in the David Robbins memorial issue of Advances in Applied Mathematics", "journal": "Adv.Appl.Math. 34 (2005) 798-811", "categories": [ "math-ph", "hep-th", "math.CO", "math.MP" ], "abstract": "An explicit expression for the numbers $A(n,r;3)$ describing the refined 3-enumeration of alternating sign matrices is given. The derivation is based on the recent results of Stroganov for the corresponding generating function. As a result, $A(n,r;3)$'s are represented as 1-fold sums which can also be written in terms of terminating ${}_4F_3$ series of argument 1/4.", "revisions": [ { "version": "v2", "updated": "2004-11-25T16:57:04.000Z" } ], "analyses": { "keywords": [ "alternating sign matrices", "explicit expression", "corresponding generating function", "derivation" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 648627, "adsabs": "2004math.ph...4045C" } } }