{ "id": "math-ph/0312071", "version": "v1", "published": "2003-12-29T09:31:05.000Z", "updated": "2003-12-29T09:31:05.000Z", "title": "On refined enumerations of some symmetry classes of ASMs", "authors": [ "A. V. Razumov", "Yu. G. Stroganov" ], "comment": "24 pages, LaTeX2e, PSTricks package", "journal": "Theor.Math.Phys.141:1609-1630,2004; Teor.Mat.Fiz.141:323-347,2004", "doi": "10.1023/B:TAMP.0000049757.07267.9d", "categories": [ "math-ph", "hep-th", "math.CO", "math.MP" ], "abstract": "Using determinant representations for partition functions of the corresponding square ice models and the method proposed recently by one of the authors, we investigate refined enumerations of vertically symmetric alternating-sign matrices, off-diagonally symmetric alternating-sign matrices and alternating-sign matrices with U-turn boundary. For all these cases the explicit formulas for refined enumerations are found. It particular, Kutin-Yuen conjecture is proved.", "revisions": [ { "version": "v1", "updated": "2003-12-29T09:31:05.000Z" } ], "analyses": { "keywords": [ "refined enumerations", "symmetry classes", "corresponding square ice models", "vertically symmetric alternating-sign matrices", "off-diagonally symmetric alternating-sign matrices" ], "tags": [ "research tool", "journal article" ], "note": { "typesetting": "LaTeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "inspire": 636533 } } }