{ "id": "math-ph/0312067", "version": "v2", "published": "2003-12-24T16:42:12.000Z", "updated": "2003-12-29T20:50:01.000Z", "title": "On the unitarization of highest weight representations for affine Kac-Moody algebras", "authors": [ "J. Garcia-Escudero", "M. Lorente" ], "comment": "Proceedings: S. Gonzalez, ed. Non-Associative Algebras and its Application (Kluwer, N.Y. 1994). LaTeX, 7 pages (late submission)", "categories": [ "math-ph", "math.MP" ], "abstract": "In a recent paper ([1],[2]) we have classified explicitely all the unitary highest weight representations of non compact real forms of semisimple Lie Algebras on Hermitian symmetric space. These results are necessary in order to construct all the unitary highest weight representations of affine Kac-Moody Algebras following some theorems proved by Jakobsen and Kac ([3],[4]).", "revisions": [ { "version": "v2", "updated": "2003-12-29T20:50:01.000Z" } ], "analyses": { "keywords": [ "affine kac-moody algebras", "unitary highest weight representations", "unitarization", "non compact real forms", "hermitian symmetric space" ], "note": { "typesetting": "LaTeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.ph..12067G" } } }