{ "id": "math-ph/0312066", "version": "v1", "published": "2003-12-24T14:26:43.000Z", "updated": "2003-12-24T14:26:43.000Z", "title": "Spectral asymptotics of harmonic oscillator perturbed by bounded potential", "authors": [ "M. Klein", "E. Korotyaev", "A. Pokrovski" ], "comment": "LaTeX, 39 pages, 2 postscript figures", "journal": "Annales Henri Poincare, V.6, No.4, pp.747-789,2005.", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "Consider the operator $ T=-{d^2dx^2}+x^2+q(x)$ in $L^2(\\mathbb{R})$, where real functions $q$, $q'$ and $\\int_0^xq(s)ds$ are bounded. In particular, $q$ is periodic or almost periodic. The spectrum of $T$ is purely discrete and consists of the simple eigenvalues $\\{\\mu_n\\}_{n=0}^\\infty$, $\\mu_n<\\mu_{n+1}$. We determine their asymptotics $\\mu_n = (2n+1) + (2\\pi)^{-1}\\int_{-\\pi}^{\\pi}q(\\sqrt{2n+1}\\sin\\theta)d\\theta + O(n^{-1/3})$.", "revisions": [ { "version": "v1", "updated": "2003-12-24T14:26:43.000Z" } ], "analyses": { "subjects": [ "34L20", "47N50" ], "keywords": [ "harmonic oscillator", "spectral asymptotics", "bounded potential", "simple eigenvalues", "real functions" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.ph..12066K" } } }