{ "id": "math-ph/0310038", "version": "v1", "published": "2003-10-20T13:04:08.000Z", "updated": "2003-10-20T13:04:08.000Z", "title": "Disentangling q-exponentials: A general approach", "authors": [ "C. Quesne" ], "comment": "LaTeX 2e, 19 pages, no figure", "journal": "Int.J.Theor.Phys. 43 (2004) 545-559", "doi": "10.1023/B:IJTP.0000028885.42890.f5", "categories": [ "math-ph", "hep-th", "math.MP", "math.QA" ], "abstract": "We revisit the q-deformed counterpart of the Zassenhaus formula, expressing the Jackson $q$-exponential of the sum of two non-$q$-commuting operators as an (in general) infinite product of $q$-exponential operators involving repeated $q$-commutators of increasing order, $E_q(A+B) = E_{q^{\\alpha_0}}(A) E_{q^{\\alpha_1}}(B) \\prod_{i=2}^{\\infty} E_{q^{\\alpha_i}}(C_i)$. By systematically transforming the $q$-exponentials into exponentials of series and using the conventional Baker-Campbell-Hausdorff formula, we prove that one can make any choice for the bases $q^{\\alpha_i}$, $i=0$, 1, 2, ..., of the $q$-exponentials in the infinite product. An explicit calculation of the operators $C_i$ in the successive factors, carried out up to sixth order, also shows that the simplest $q$-Zassenhaus formula is obtained for $\\alpha_0 = \\alpha_1 = 1$, $\\alpha_2 = 2$, and $\\alpha_3 = 3$. This confirms and reinforces a result of Sridhar and Jagannathan, based on fourth-order calculations.", "revisions": [ { "version": "v1", "updated": "2003-10-20T13:04:08.000Z" } ], "analyses": { "keywords": [ "general approach", "disentangling q-exponentials", "zassenhaus formula", "infinite product", "conventional baker-campbell-hausdorff formula" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "inspire": 631123 } } }