{ "id": "math-ph/0309044", "version": "v1", "published": "2003-09-18T05:22:07.000Z", "updated": "2003-09-18T05:22:07.000Z", "title": "Local exponents and infinitesimal generators of canonical transformations on Boson Fock spaces", "authors": [ "F. Hiroshima", "K. R. Ito" ], "categories": [ "math-ph", "math.MP" ], "abstract": "A one-parameter symplectic group $\\{e^{t\\dA}\\}_{t\\in\\RR}$ derives proper canonical transformations on a Boson Fock space. It has been known that the unitary operator $U_t$ implementing such a proper canonical transformation gives a projective unitary representation of $\\{e^{t\\dA}\\}_{t\\in\\RR}$ and that $U_t$ can be expressed as a normal-ordered form. We rigorously derive the self-adjoint operator $\\D(\\dA)$ and a phase factor $e^{i\\int_0^t\\TA(s)ds}$ with a real-valued function $\\TA$ such that $U_t=e^{i\\int_0^t\\TA(s)ds}e^{it\\D(\\dA)}$. Key words: Canonical transformations(Bogoliubov transformations), symplectic groups, projective unitary representations, one-parameter unitary groups, infinitesimal self-adjoint generators, local factors, local exponents, normal-ordered quadratic expressions.", "revisions": [ { "version": "v1", "updated": "2003-09-18T05:22:07.000Z" } ], "analyses": { "keywords": [ "boson fock space", "local exponents", "infinitesimal generators", "projective unitary representation", "one-parameter symplectic group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math.ph...9044H" } } }