{ "id": "math-ph/0305013", "version": "v1", "published": "2003-05-07T15:07:31.000Z", "updated": "2003-05-07T15:07:31.000Z", "title": "Geodesic Flow on the Diffeomorphism Group of the circle", "authors": [ "Adrian Constantin", "Boris Kolev" ], "comment": "15 pages", "journal": "Comment. Math. Helv. 78 no 4, pp. 787--804 (2003)", "categories": [ "math-ph", "math.AP", "math.MP" ], "abstract": "We show that certain right-invariant metrics endow the infinite-dimensional Lie group of all smooth orientation-preserving diffeomorphisms of the circle with a Riemannian structure. The study of the Riemannian exponential map allows us to prove infinite-dimensional counterparts of results from classical Riemannian geometry: the Riemannian exponential map is a smooth local diffeomorphism and the length-minimizing property of the geodesics holds.", "revisions": [ { "version": "v1", "updated": "2003-05-07T15:07:31.000Z" } ], "analyses": { "subjects": [ "35Q35", "58B25" ], "keywords": [ "diffeomorphism group", "geodesic flow", "riemannian exponential map", "infinite-dimensional lie group", "right-invariant metrics endow" ], "tags": [ "journal article" ], "publication": { "doi": "10.2991/jnmp.2003.10.4.1", "journal": "Journal of Nonlinear Mathematical Physics", "year": 2003, "volume": 10, "number": 4, "pages": 424 }, "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003JNMP...10..424C" } } }