{ "id": "math-ph/0302035", "version": "v1", "published": "2003-02-13T15:59:05.000Z", "updated": "2003-02-13T15:59:05.000Z", "title": "The heat kernel expansion for the electromagnetic field in a cavity", "authors": [ "F. Bernasconi", "G. M. Graf", "D. Hasler" ], "comment": "12 pages", "categories": [ "math-ph", "math.MP" ], "abstract": "We derive the first six coefficients of the heat kernel expansion for the electromagnetic field in a cavity by relating it to the expansion for the Laplace operator acting on forms. As an application we verify that the electromagnetic Casimir energy is finite.", "revisions": [ { "version": "v1", "updated": "2003-02-13T15:59:05.000Z" } ], "analyses": { "subjects": [ "78A25", "81T70" ], "keywords": [ "heat kernel expansion", "electromagnetic field", "electromagnetic casimir energy", "laplace operator acting", "application" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003AnHP....4.1001B" } } }