{ "id": "math-ph/0212058", "version": "v1", "published": "2002-12-19T05:15:59.000Z", "updated": "2002-12-19T05:15:59.000Z", "title": "Integrated density of states for random metrics on manifolds", "authors": [ "Daniel Lenz", "Norbert Peyerimhoff", "Ivan Veselic'" ], "comment": "21 pages", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "We study ergodic random Schr\"odinger operators on a covering manifold, where the randomness enters both via the potential and the metric. We prove measurability of the random operators, almost sure constancy of their spectral properties, the existence of a selfaveraging integrated density of states and a \\v{S}ubin type trace formula.", "revisions": [ { "version": "v1", "updated": "2002-12-19T05:15:59.000Z" } ], "analyses": { "subjects": [ "35J10", "58J35", "82B44" ], "keywords": [ "integrated density", "random metrics", "study ergodic random schr", "type trace formula", "randomness enters" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.ph..12058L" } } }