{ "id": "math-ph/0210047", "version": "v1", "published": "2002-10-25T06:23:57.000Z", "updated": "2002-10-25T06:23:57.000Z", "title": "Integrated density of states for ergodic random Schrödinger operators on manifolds", "authors": [ "Norbert Peyerimhoff", "Ivan Veselić" ], "comment": "LaTeX 2e, amsart, 17 pages; appeared in a somewhat different form in Geometriae Dedicata, 91 (1): 117-135, (2002)", "journal": "Geometriae Dedicata, 91 (1): 117-135, (2002)", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "We consider the Riemannian universal covering of a compact manifold $M = X / \\Gamma$ and assume that $\\Gamma$ is amenable. We show for an ergodic random family of Schr\\\"odinger operators on $X$ the existence of a (non-random) integrated density of states.", "revisions": [ { "version": "v1", "updated": "2002-10-25T06:23:57.000Z" } ], "analyses": { "subjects": [ "82B44", "58J35", "47B80" ], "keywords": [ "ergodic random schrödinger operators", "integrated density", "compact manifold", "riemannian universal covering", "ergodic random family" ], "tags": [ "journal article" ], "note": { "typesetting": "AMS-TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.ph..10047P" } } }