{ "id": "math-ph/0208005", "version": "v1", "published": "2002-08-02T10:13:08.000Z", "updated": "2002-08-02T10:13:08.000Z", "title": "Equivalence of Q-Conditional Symmetries under Group of Local Transformation", "authors": [ "Roman O. Popovych" ], "comment": "LaTeX2e, 7 pages", "journal": "Proccedings of the Third Inter. Conf. \"Symmetry in Nonlinear Mathematical Physics\", Kyiv, Institute of Mathematics, 2000, Part 1, 184-189", "categories": [ "math-ph", "math.AP", "math.MP", "nlin.SI", "physics.flu-dyn" ], "abstract": "The definition of Q-conditional symmetry for one PDE is correctly generalized to a special case of systems of PDEs and involutive families of operators. The notion of equivalence of Q-conditional symmetries under a group of local transformation is introduced. Using this notion, all possible single Q-conditional symmetry operators are classified for the n-dimensional (n >= 2) linear heat equation and for the Euler equations describing the motion of an incompressible ideal fluid.", "revisions": [ { "version": "v1", "updated": "2002-08-02T10:13:08.000Z" } ], "analyses": { "subjects": [ "35A30", "58J70", "35K05", "35Q30", "35Q35", "76D05", "76M60" ], "keywords": [ "local transformation", "equivalence", "single q-conditional symmetry operators", "linear heat equation", "special case" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.ph...8005P" } } }