{ "id": "math-ph/0206027", "version": "v2", "published": "2002-06-17T21:37:34.000Z", "updated": "2004-02-10T20:38:11.000Z", "title": "Hamiltonian and Linear-Space Structure for Damped Oscillators: II. Critical Points", "authors": [ "S. C. Chee", "Alec Maassen van den Brink", "K. Young" ], "comment": "REVTeX4, 9pp., 5 PS figures. v2: extensive streamlining", "journal": "J. Phys. A _37_, 8883 (2004)", "doi": "10.1088/0305-4470/37/37/009", "categories": [ "math-ph", "math.DS", "math.MP", "math.RA", "physics.class-ph" ], "abstract": "The eigenvector expansion developed in the preceding paper for a system of damped linear oscillators is extended to critical points, where eigenvectors merge and the time-evolution operator $H$ assumes a Jordan-block structure. The representation of the bilinear map is obtained in this basis. Perturbations $\\epsilon\\Delta H$ around an $M$-th order critical point generically lead to eigenvalue shifts $\\sim\\epsilon^{1/M}$ dependent on only_one_ matrix element, with the $M$ eigenvalues splitting in equiangular directions in the complex plane. Small denominators near criticality are shown to cancel.", "revisions": [ { "version": "v2", "updated": "2004-02-10T20:38:11.000Z" } ], "analyses": { "keywords": [ "linear-space structure", "damped oscillators", "hamiltonian", "bilinear map", "small denominators" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Physics A Mathematical General", "year": 2004, "month": "Sep", "volume": 37, "pages": 8883 }, "note": { "typesetting": "RevTeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004JPhA...37.8883C" } } }