{ "id": "math-ph/0206023", "version": "v1", "published": "2002-06-14T22:36:05.000Z", "updated": "2002-06-14T22:36:05.000Z", "title": "Sum Rules and the Szego Condition for Orthogonal Polynomials on the Real Line", "authors": [ "Barry Simon", "Andrej Zlatos" ], "doi": "10.1007/s00220-003-0906-5", "categories": [ "math-ph", "math.MP" ], "abstract": "We study the Case sum rules, especially $C_0$, for general Jacobi matrices. We establish situations where the sum rule is valid. Applications include an extension of Shohat's theorem to cases with an infinite point spectrum and a proof that if $\\lim n (a_n -1)=\\alpha$ and $\\lim nb_n =\\beta$ exist and $2\\alpha <\\abs{\\beta}$, then the Szeg\\H{o} condition fails.", "revisions": [ { "version": "v1", "updated": "2002-06-14T22:36:05.000Z" } ], "analyses": { "subjects": [ "47B36", "42C05" ], "keywords": [ "real line", "orthogonal polynomials", "szego condition", "case sum rules", "general jacobi matrices" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Commun. Math. Phys." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }