{ "id": "math-ph/0203018", "version": "v1", "published": "2002-03-11T17:43:07.000Z", "updated": "2002-03-11T17:43:07.000Z", "title": "Dynamical Upper Bounds for One-Dimensional Quasicrystals", "authors": [ "David Damanik" ], "comment": "14 pages; this paper extends and replaces math-ph/0112013", "categories": [ "math-ph", "math.MP" ], "abstract": "Following the Killip-Kiselev-Last method, we prove quantum dynamical upper bounds for discrete one-dimensional Schr\\\"odinger operators with Sturmian potentials. These bounds hold for sufficiently large coupling, almost every rotation number, and every phase.", "revisions": [ { "version": "v1", "updated": "2002-03-11T17:43:07.000Z" } ], "analyses": { "subjects": [ "81Q10", "47B80", "68R15" ], "keywords": [ "one-dimensional quasicrystals", "quantum dynamical upper bounds", "sturmian potentials", "killip-kiselev-last method", "rotation number" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }