{ "id": "math-ph/0201044", "version": "v2", "published": "2002-01-19T06:00:28.000Z", "updated": "2002-03-12T00:29:02.000Z", "title": "On Weyl Quantization from geometric Quantization", "authors": [ "P. de M. Rios", "G. M. Tuynman" ], "comment": "11 pages. (v2: corrected a couple of typos)", "journal": "A.I.P. Conf. Proc. 1079 (2008) 26-38 [revised version]", "categories": [ "math-ph", "math.MP", "math.SG" ], "abstract": "A. Weinstein has conjectured a nice looking formula for a deformed product of functions on a hermitian symmetric space of non-compact type. We derive such a formula for symmetric symplectic spaces using ideas from geometric quantization and prequantization of symplectic groupoids. We compute the result explicitly for the natural 2-dimensional symplectic manifolds: the euclidean plane, the sphere and the hyperbolic plane. For the euclidean plane we obtain the well known Moyal-Weyl product. The other cases show that Weinstein's original idea should be interpreted with care. We conclude with comments on the status of our result.", "revisions": [ { "version": "v2", "updated": "2002-03-12T00:29:02.000Z" } ], "analyses": { "subjects": [ "03.65.Wj", "02.60.-x", "02.30.Ik" ], "keywords": [ "geometric quantization", "weyl quantization", "euclidean plane", "symmetric symplectic spaces", "weinsteins original idea" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "inspire": 581973, "adsabs": "2008AIPC.1079...26R" } } }