{ "id": "math-ph/0110007", "version": "v3", "published": "2001-10-03T16:50:04.000Z", "updated": "2001-12-25T17:53:24.000Z", "title": "Quantum de Rham complex with $d^3 = 0$ differential", "authors": [ "N. Bazunova", "A. Borowiec", "R. Kerner" ], "comment": "6 pages, submitted to Czechoslovak Journal of Physics v. 51 (2001)", "journal": "Czech. J. Phys., 51 2001 1266", "doi": "10.1023/A:1013301532095", "categories": [ "math-ph", "math.MP", "math.QA" ], "abstract": "In this work, we construct the de Rham complex with differential operator d satisfying the Q-Leibniz rule, where Q is a complex number, and the condition $d^3=0$ on an associative unital algebra with quadratic relations. Therefore we introduce the second order differentials $d^2x^i$. In our formalism, besides the usual two-dimensional quantum plane, we observe that the second order differentials $d^2 x$ and $d^2 y$ generate either bosonic or fermionic quantum planes, depending on the choice of the differentiation parameter Q.", "revisions": [ { "version": "v3", "updated": "2001-12-25T17:53:24.000Z" } ], "analyses": { "subjects": [ "17B37" ], "keywords": [ "rham complex", "second order differentials", "usual two-dimensional quantum plane", "fermionic quantum planes", "differential operator" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }