{ "id": "math-ph/0104026", "version": "v1", "published": "2001-04-18T14:10:07.000Z", "updated": "2001-04-18T14:10:07.000Z", "title": "On a Certain Stratification of the Gauge Orbit Space", "authors": [ "G. Rudolph", "M. Schmidt" ], "comment": "12 pages, 1 figure", "categories": [ "math-ph", "hep-th", "math.DG", "math.MP" ], "abstract": "For a principal $\\rmSU(n)$-bundle over a compact manifold of dimension $2,3,4$, we determine the orbit types of the action of the gauge group on the space of connections modulo pointed local gauge transformations. We find that they are given by Howe subgroups of $\\rmSU(n)$ for which a certain characteristic equation is solvable. Depending on the base manifold, this equation leads to a linear, bilinear, or quadratic Diophantine equation.", "revisions": [ { "version": "v1", "updated": "2001-04-18T14:10:07.000Z" } ], "analyses": { "subjects": [ "53C05", "53C80" ], "keywords": [ "gauge orbit space", "modulo pointed local gauge transformations", "stratification", "connections modulo pointed local gauge", "quadratic diophantine equation" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "inspire": 555955, "adsabs": "2001math.ph...4026R" } } }