{ "id": "math-ph/0102028", "version": "v3", "published": "2001-02-22T20:22:55.000Z", "updated": "2001-03-31T02:21:50.000Z", "title": "Reconstruction of the potential from I-function", "authors": [ "A. G. Ramm" ], "categories": [ "math-ph", "math.MP" ], "abstract": "If $f(x,k)$ is the Jost solution and $f(x) = f(0,k)$, then the $I$-function is $I(k) := \\frac{f^\\prime(0,k)}{f(k)}$. It is proved that $I(k)$ is in one-to-one correspondence with the scattering triple ${\\mathcal S} :=\\{S(k), k_j, s_j, \\quad 1 \\leq j \\leq J\\}$ and with the spectral function $\\rho(\\lambda)$ of the Sturm-Liouville operator $l= -\\frac{d^2}{dx^2} + q(x)$ on $(0, \\infty)$ with the Dirichlet condition at $x=0$ and $q(x) \\in L_{1,1} := \\{q: q= \\bar q, \\int^\\infty_0 (1+x) |q(x) dx < \\infty\\}$. Analytical methods are given for finding $\\mathcal S$ from $I(k)$ and $I(k)$ from $\\mathcal S$, and $\\rho(\\lambda)$ from $I(k)$ and $I(k)$ from $\\rho(\\lambda)$. Since the methods for finding $q(x)$ from $\\mathcal S$ or from $\\rho(\\lambda)$ are known, this yields the methods for finding $q(x)$ from $I(k)$.", "revisions": [ { "version": "v3", "updated": "2001-03-31T02:21:50.000Z" } ], "analyses": { "subjects": [ "34R30" ], "keywords": [ "reconstruction", "i-function", "jost solution", "one-to-one correspondence", "spectral function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math.ph...2028R" } } }