{ "id": "math-ph/0011035", "version": "v3", "published": "2000-11-20T15:47:42.000Z", "updated": "2001-03-28T20:17:16.000Z", "title": "A non-overdetermined inverse problem of finding the potential from the spectral function", "authors": [ "A. G. Ramm" ], "comment": "14pp", "categories": [ "math-ph", "math.AP", "math.MP" ], "abstract": "Let $D\\subset \\R^n$, $n\\geq 3,$ be a bounded domain with a $C^{\\infty}$ boundary $S$, $L=-\\nabla^2+q(x)$ be a selfadjoint operator defined in $H=L^2(D)$ by the Neumann boundary condition, $\\theta(x,y,\\lambda)$ be its spectral function, $\\theta(x,y,\\lambda):=\\ds\\sum_{\\lambda_j<\\lambda} \\phi_j(x)\\phi$ where $L\\phi_j=\\lambda_j\\phi_j$, $\\phi_{j N}|_S=0,$ $\\|\\phi_j\\|_{L^2(D)}=1$, $j=1,2,...$. The potential $q(x)$ is a real-valued function, $q\\in C^\\infty(D)$. It is proved that $q(x)$ is uniquely determined by the data $\\theta(s,s,\\lambda) \\forall s\\in S$, $\\forall \\lambda\\in \\R_+$ if all the eigenvalues of $L$ are simple.", "revisions": [ { "version": "v3", "updated": "2001-03-28T20:17:16.000Z" } ], "analyses": { "subjects": [ "35R30" ], "keywords": [ "non-overdetermined inverse problem", "spectral function", "neumann boundary condition", "bounded domain", "selfadjoint operator" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math.ph..11035R" } } }