{ "id": "math-ph/0008036", "version": "v3", "published": "2000-08-25T13:45:40.000Z", "updated": "2000-11-29T10:26:40.000Z", "title": "Functoriality and Morita equivalence of operator algebras and Poisson manifolds associated to groupoids", "authors": [ "N. P. Landsman" ], "comment": "23 pages, results on measured groupoids and von Neumann algebras added", "categories": [ "math-ph", "math.MP", "math.OA", "math.SG" ], "abstract": "It is well known that a measured groupoid G defines a von Neumann algebra W*(G), and that a Lie groupoid G canonically defines both a C*-algebra C*(G) and a Poisson manifold A*(G). We show that the maps G -> W*(G), G -> C*(G) and G -> A*(G) are functorial with respect to suitable categories. In these categories Morita equivalence is isomorphism of objects, so that these maps preserve Morita equivalence.", "revisions": [ { "version": "v3", "updated": "2000-11-29T10:26:40.000Z" } ], "analyses": { "subjects": [ "46L08", "22A22", "53D17" ], "keywords": [ "poisson manifolds", "operator algebras", "maps preserve morita equivalence", "functoriality", "von neumann algebra" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math.ph...8036L" } } }