{ "id": "math-ph/0008003", "version": "v2", "published": "2000-08-02T12:32:49.000Z", "updated": "2000-08-21T16:14:00.000Z", "title": "Bicategories of operator algebras and Poisson manifolds", "authors": [ "N. P. Landsman" ], "comment": "15 pages. Style file updated (refs. were not numbered)", "categories": [ "math-ph", "math.CT", "math.MP", "math.OA", "math.SG" ], "abstract": "It is well known that rings are the objects of a bicategory, whose arrows are bimodules, composed through the bimodule tensor product. We give an analogous bicategorical description of C*-algebras, von Neumann algebras, Lie groupoids, symplectic groupoids, and Poisson manifolds. The upshot is that known definitions of Morita equivalence for any of these cases amount to isomorphism of objects in the pertinent bicategory.", "revisions": [ { "version": "v2", "updated": "2000-08-21T16:14:00.000Z" } ], "analyses": { "subjects": [ "18D05", "46L08", "22A22", "53D17" ], "keywords": [ "poisson manifolds", "operator algebras", "bimodule tensor product", "von neumann algebras", "symplectic groupoids" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math.ph...8003L" } } }