{ "id": "math-ph/0006002", "version": "v1", "published": "2000-06-05T06:49:43.000Z", "updated": "2000-06-05T06:49:43.000Z", "title": "On the maximal ionization of atoms in strong magnetic fields", "authors": [ "Robert Seiringer" ], "comment": "LaTeX2e, 8 pages", "journal": "J. Phys. A: Math. Gen. 34, 1943 (2001)", "doi": "10.1088/0305-4470/34/9/311", "categories": [ "math-ph", "math.MP" ], "abstract": "We give upper bounds for the number of spin 1/2 particles that can be bound to a nucleus of charge Z in the presence of a magnetic field B, including the spin-field coupling. We use Lieb's strategy, which is known to yield N_c<2Z+1 for magnetic fields that go to zero at infinity, ignoring the spin-field interaction. For particles with fermionic statistics in a homogeneous magnetic field our upper bound has an additional term of order $Z\\times\\min{(B/Z^3)^{2/5},1+|\\ln(B/Z^3)|^2}$.", "revisions": [ { "version": "v1", "updated": "2000-06-05T06:49:43.000Z" } ], "analyses": { "subjects": [ "81V45", "46N50", "35Q40" ], "keywords": [ "strong magnetic fields", "maximal ionization", "upper bound", "homogeneous magnetic field", "fermionic statistics" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }