{ "id": "hep-th/9502068", "version": "v1", "published": "1995-02-12T17:22:43.000Z", "updated": "1995-02-12T17:22:43.000Z", "title": "sl(N) Onsager's Algebra and Integrability", "authors": [ "D. Uglov", "I. Ivanov" ], "doi": "10.1007/BF02189226", "categories": [ "hep-th" ], "abstract": "We define an $ sl(N) $ analog of Onsager's Algebra through a finite set of relations that generalize the Dolan Grady defining relations for the original Onsager's Algebra. This infinite-dimensional Lie Algebra is shown to be isomorphic to a fixed point subalgebra of $ sl(N) $ Loop Algebra with respect to a certain involution. As the consequence of the generalized Dolan Grady relations a Hamiltonian linear in the generators of $ sl(N) $ Onsager's Algebra is shown to posses an infinite number of mutually commuting integrals of motion.", "revisions": [ { "version": "v1", "updated": "1995-02-12T17:22:43.000Z" } ], "analyses": { "keywords": [ "integrability", "infinite-dimensional lie algebra", "dolan grady defining relations", "generalized dolan grady relations", "original onsagers algebra" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Commun. Math. Phys." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 392715 } } }