{ "id": "gr-qc/0504044", "version": "v2", "published": "2005-04-11T14:04:10.000Z", "updated": "2005-07-05T13:24:18.000Z", "title": "Non-singular solutions in multidimensional model with scalar fields and exponential potential", "authors": [ "J. -M. Alimi", "V. D. Ivashchuk", "V. N. Melnikov" ], "comment": "13 pages, Latex, to appear in Gravitation and Cosmology; 5 refs. are added", "journal": "Grav.Cosmol. 11 (2005) 111-115", "categories": [ "gr-qc", "hep-th" ], "abstract": "Using developed earlier our methods for multidimensional models \\cite{M1,M2,M3} a family of cosmological-type solutions in D-dimensional model with two sets of scalar fields \\vec{\\phi} and \\vec{\\psi} and exponential potential depending upon \\vec{\\phi} is considered. The solutions are defined on a product of n Ricci-flat spaces. The fields from \\vec{\\phi} have positive kinetic terms and \\vec{\\psi} are \"phantom\" fields with negative kinetic terms. For vector coupling constant obeying 0< \\vec{\\lambda}^2 < (D-1)/(D-2) a subclass of non-singular solutions is singled out. The solutions from this subclass are regular for all values of synchronous \"time\" \\tau \\in (- \\infty, + \\infty). For \\vec{\\lambda}^2 < 1/(D-2) we get an asymptotically accelerated and isotropic expansion for large values of \\tau.", "revisions": [ { "version": "v2", "updated": "2005-07-05T13:24:18.000Z" } ], "analyses": { "keywords": [ "scalar fields", "non-singular solutions", "exponential potential", "multidimensional model", "vector coupling constant" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "inspire": 680279 } } }