{ "id": "cond-mat/9910324", "version": "v1", "published": "1999-10-21T11:07:16.000Z", "updated": "1999-10-21T11:07:16.000Z", "title": "A semiclassical approach to the ground state and density oscillations of quantum dots", "authors": [ "A. Puente", "M. Casas", "Ll. Serra" ], "comment": "REVTEX, 8 PDF figures, accepted in Physica E", "journal": "Physica E 8, 387 (2000)", "doi": "10.1016/S1386-9477(99)00042-9", "categories": [ "cond-mat.mes-hall" ], "abstract": "A semiclassical Thomas-Fermi method, including a Weizs\\\"acker gradient term, is implemented to describe ground states of two dimensional nanostructures of arbitrary shape. Time dependent density oscillations are addressed in the same spirit using the corresponding semiclassical time-dependent equations. The validity of the approximations is tested, both for ground state and density oscillations, comparing with the available microscopic Kohn-Sham solutions.", "revisions": [ { "version": "v1", "updated": "1999-10-21T11:07:16.000Z" } ], "analyses": { "keywords": [ "ground state", "quantum dots", "semiclassical approach", "time dependent density oscillations", "microscopic kohn-sham solutions" ], "tags": [ "journal article" ], "note": { "typesetting": "RevTeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }