{ "id": "cond-mat/9908216", "version": "v2", "published": "1999-08-16T21:05:01.000Z", "updated": "1999-08-19T18:57:36.000Z", "title": "Exact results and scaling properties of small-world networks", "authors": [ "R. V. Kulkarni", "E. Almaas", "D. Stroud" ], "comment": "RevTeX, 4 pages, 5 figures included. Minor corrections and additions", "journal": "Phys. Rev. E 61, 4268 (2000)", "doi": "10.1103/PhysRevE.61.4268", "categories": [ "cond-mat.stat-mech", "cond-mat.dis-nn" ], "abstract": "We study the distribution function for minimal paths in small-world networks. Using properties of this distribution function, we derive analytic results which greatly simplify the numerical calculation of the average minimal distance, $\\bar{\\ell}$, and its variance, $\\sigma^2$. We also discuss the scaling properties of the distribution function. Finally, we study the limit of large system sizes and obtain some analytic results.", "revisions": [ { "version": "v2", "updated": "1999-08-19T18:57:36.000Z" } ], "analyses": { "keywords": [ "small-world networks", "scaling properties", "exact results", "distribution function", "large system sizes" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. E" }, "note": { "typesetting": "RevTeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }