{ "id": "cond-mat/9903426", "version": "v4", "published": "1999-03-30T00:10:33.000Z", "updated": "2000-04-11T21:47:23.000Z", "title": "First-order transition in small-world networks", "authors": [ "M. Argollo de Menezes", "C. Moukarzel", "T. J. P. Penna" ], "comment": "4 pages, 3 figures, To appear in Europhysics Letters", "journal": "Europhys. Lett. vol.50, 5 (2000).", "doi": "10.1209/epl/i2000-00308-1", "categories": [ "cond-mat.dis-nn" ], "abstract": "The small-world transition is a first-order transition at zero density $p$ of shortcuts, whereby the normalized shortest-path distance undergoes a discontinuity in the thermodynamic limit. On finite systems the apparent transition is shifted by $\\Delta p \\sim L^{-d}$. Equivalently a ``persistence size'' $L^* \\sim p^{-1/d}$ can be defined in connection with finite-size effects. Assuming $L^* \\sim p^{-\\tau}$, simple rescaling arguments imply that $\\tau=1/d$. We confirm this result by extensive numerical simulation in one to four dimensions, and argue that $\\tau=1/d$ implies that this transition is first-order.", "revisions": [ { "version": "v4", "updated": "2000-04-11T21:47:23.000Z" } ], "analyses": { "keywords": [ "first-order transition", "small-world networks", "normalized shortest-path distance undergoes", "zero density", "apparent transition" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }