{ "id": "cond-mat/9902362", "version": "v1", "published": "1999-02-26T19:32:24.000Z", "updated": "1999-02-26T19:32:24.000Z", "title": "Breakdown of Scaling in the Nonequilibrium Critical Dynamics of the Two-Dimensional XY Model", "authors": [ "A. J. Bray", "A. J. Briant", "D. K. Jervis" ], "comment": "4 pages, 3 figures", "journal": "Phys. Rev. Lett. 84, 1503 (2000)", "doi": "10.1103/PhysRevLett.84.1503", "categories": [ "cond-mat.stat-mech" ], "abstract": "The approach to equilibrium, from a nonequilibrium initial state, in a system at its critical point is usually described by a scaling theory with a single growing length scale, $\\xi(t) \\sim t^{1/z}$, where z is the dynamic exponent that governs the equilibrium dynamics. We show that, for the 2D XY model, the rate of approach to equilibrium depends on the initial condition. In particular, $\\xi(t) \\sim t^{1/2}$ if no free vortices are present in the initial state, while $\\xi(t) \\sim (t/\\ln t)^{1/2}$ if free vortices are present.", "revisions": [ { "version": "v1", "updated": "1999-02-26T19:32:24.000Z" } ], "analyses": { "keywords": [ "two-dimensional xy model", "nonequilibrium critical dynamics", "free vortices", "nonequilibrium initial state", "2d xy model" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. Lett." }, "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }