{ "id": "cond-mat/9809331", "version": "v1", "published": "1998-09-24T13:51:17.000Z", "updated": "1998-09-24T13:51:17.000Z", "title": "Hydrodynamic Limit of Brownian Particles Interacting with Short and Long Range Forces", "authors": [ "Paolo Butta`", "Joel L. Lebowitz" ], "comment": "37 pages, in TeX (compile twice), to appear on J. Stat. Phys., e-mail addresses: pbutta@math.rutgers.edu, lebowitz@math.rutgers.edu", "categories": [ "cond-mat.stat-mech" ], "abstract": "We investigate the time evolution of a model system of interacting particles, moving in a $d$-dimensional torus. The microscopic dynamics are first order in time with velocities set equal to the negative gradient of a potential energy term $\\Psi$ plus independent Brownian motions: $\\Psi$ is the sum of pair potentials, $V(r)+\\gamma^d J(\\gamma r)$, the second term has the form of a Kac potential with inverse range $\\gamma$. Using diffusive hydrodynamical scaling (spatial scale $\\gamma^{-1}$, temporal scale $\\gamma^{-2}$) we obtain, in the limit $\\gamma\\downarrow 0$, a diffusive type integro-differential equation describing the time evolution of the macroscopic density profile.", "revisions": [ { "version": "v1", "updated": "1998-09-24T13:51:17.000Z" } ], "analyses": { "keywords": [ "long range forces", "brownian particles interacting", "hydrodynamic limit", "type integro-differential equation describing", "time evolution" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable" } } }