{ "id": "cond-mat/9809274", "version": "v1", "published": "1998-09-21T12:25:37.000Z", "updated": "1998-09-21T12:25:37.000Z", "title": "Grassmann Algebra and Fermions at Finite Temperature", "authors": [ "I. C. Charret", "E. V. CorrĂȘa Silva", "S. M. de Souza", "O. Rojas Santos", "M. T. Thomaz" ], "comment": "Latex, 18 pages, no figures", "categories": [ "cond-mat.stat-mech" ], "abstract": "For any d-dimensional self-interacting fermionic model, all coefficients in the high-temperature expansion of its grand canonical partition function can be put in terms of multivariable Grassmann integrals. A new approach to calculate such coefficients, based on direct exploitation of the grassmannian nature of fermionic operators, is presented. We apply the method to the soluble Hatsugai-Kohmoto model, reobtaining well-known results.", "revisions": [ { "version": "v1", "updated": "1998-09-21T12:25:37.000Z" } ], "analyses": { "subjects": [ "05.30.Fk", "05.30.Ch", "02.10.-v" ], "keywords": [ "finite temperature", "grassmann algebra", "d-dimensional self-interacting fermionic model", "grand canonical partition function", "reobtaining well-known results" ], "publication": { "doi": "10.1063/1.533008", "journal": "Journal of Mathematical Physics", "year": 1999, "month": "Oct", "volume": 40, "number": 10, "pages": 4944 }, "note": { "typesetting": "LaTeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999JMP....40.4944C" } } }