{ "id": "cond-mat/9809175", "version": "v1", "published": "1998-09-11T15:42:22.000Z", "updated": "1998-09-11T15:42:22.000Z", "title": "Self-Diffusion in Simple Models: Systems with Long-Range Jumps", "authors": [ "A. Asselah", "R. Brito", "J. L. Lebowitz" ], "comment": "24 pages, in TeX, 1 figure, e-mail addresses: asselah@math.ethz.ch, brito@seneca.fis.ucm.es, lebowitz@math.rutgers.edu", "journal": "Journal of Statistical Physics 87 (1997) 1131--1144", "categories": [ "cond-mat.stat-mech" ], "abstract": "We review some exact results for the motion of a tagged particle in simple models. Then, we study the density dependence of the self diffusion coefficient, $D_N(\\rho)$, in lattice systems with simple symmetric exclusion in which the particles can jump, with equal rates, to a set of $N$ neighboring sites. We obtain positive upper and lower bounds on $F_N(\\rho)=N((1-\\r)-[D_N(\\rho)/D_N(0)])/(\\rho(1-\\rho))$ for $\\rho\\in [0,1]$. Computer simulations for the square, triangular and one dimensional lattice suggest that $F_N$ becomes effectively independent of $N$ for $N\\ge 20$.", "revisions": [ { "version": "v1", "updated": "1998-09-11T15:42:22.000Z" } ], "analyses": { "keywords": [ "simple models", "long-range jumps", "self-diffusion", "simple symmetric exclusion", "self diffusion coefficient" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }