{ "id": "cond-mat/9806253", "version": "v1", "published": "1998-06-21T23:22:25.000Z", "updated": "1998-06-21T23:22:25.000Z", "title": "Condensation of Hard Spheres Under Gravity", "authors": [ "Daniel C. Hong" ], "comment": "9 pages, one figure", "doi": "10.1016/S0378-4371(99)00181-8", "categories": [ "cond-mat.stat-mech", "cond-mat.mtrl-sci" ], "abstract": "Starting from Enskog equation of hard spheres of mass m and diameter D under the gravity g, we first derive the exact equation of motion for the equilibrium density profile at a temperature T and examine its solutions via the gradient expansion. The solutions exist only when \\beta\\mu \\le \\mu_o \\approx 21.756 in 2 dimensions and \\mu_o\\approx 15.299 in 3 dimensions, where \\mu is the dimensionless initial layer thickness and \\beta=mgD/T. When this inequality breaks down, a fraction of particles condense from the bottom up to the Fermi surface.", "revisions": [ { "version": "v1", "updated": "1998-06-21T23:22:25.000Z" } ], "analyses": { "keywords": [ "hard spheres", "condensation", "dimensionless initial layer thickness", "particles condense", "inequality breaks" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }