{ "id": "cond-mat/9803316", "version": "v2", "published": "1998-03-26T04:03:46.000Z", "updated": "1999-02-25T18:40:45.000Z", "title": "Statistical Mechanics of Learning in the Presence of Outliers", "authors": [ "Rainer Dietrich", "Manfred Opper" ], "comment": "24 pages, 7 figures (minor extensions added)", "journal": "J. Phys. A: Math. Gen. 31 (1998) 9131-9147", "doi": "10.1088/0305-4470/31/46/005", "categories": [ "cond-mat.dis-nn" ], "abstract": "Using methods of statistical mechanics, we analyse the effect of outliers on the supervised learning of a classification problem. The learning strategy aims at selecting informative examples and discarding outliers. We compare two algorithms which perform the selection either in a soft or a hard way. When the fraction of outliers grows large, the estimation errors undergo a first order phase transition.", "revisions": [ { "version": "v2", "updated": "1999-02-25T18:40:45.000Z" } ], "analyses": { "keywords": [ "statistical mechanics", "first order phase transition", "outliers grows large", "estimation errors undergo", "hard way" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }