{ "id": "cond-mat/9803026", "version": "v1", "published": "1998-03-02T18:35:30.000Z", "updated": "1998-03-02T18:35:30.000Z", "title": "The effective potential, critical point scaling and the renormalization group", "authors": [ "Joseph Rudnick", "William Lay", "David Jasnow" ], "comment": "REVTEX file, 22 pages, three figures, submitted to Phys. Rev. E", "journal": "Phys.Rev.E58:2902-2909,1998", "doi": "10.1103/PhysRevE.58.2902", "categories": [ "cond-mat.stat-mech" ], "abstract": "The desirability of evaluating the effective potential in field theories near a phase transition has been recognized in a number of different areas. We show that recent Monte Carlo simulations for the probability distribution for the order parameter in an equilibrium Ising system, when combined with low-order renormalization group results for an ordinary $\\phi^4$ system, can be used to extract the effective potential. All scaling features are included in the process.", "revisions": [ { "version": "v1", "updated": "1998-03-02T18:35:30.000Z" } ], "analyses": { "keywords": [ "effective potential", "critical point scaling", "low-order renormalization group results", "monte carlo simulations", "field theories" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. E" }, "note": { "typesetting": "RevTeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "inspire": 467924 } } }