{ "id": "cond-mat/9710201", "version": "v1", "published": "1997-10-20T16:28:58.000Z", "updated": "1997-10-20T16:28:58.000Z", "title": "Low-temperature asymptotics of free energy of 3D Ising model in an external magnetic field", "authors": [ "Martin S. Kochman'ski" ], "comment": "12 pages, REVTEX, submitted to J. Math. Phys", "categories": [ "cond-mat.stat-mech" ], "abstract": "The paper presents new method for calculating the low-temperature asymptotics of free energy of the 3D Ising model in external magnetic field $(H\\neq 0)$. The results obtained are valid in the wide range of temperature and magnetic field values fulfilling the condition: $[1-\\tanh(h/2)]\\sim\\epsilon,$ for $\\epsilon\\ll 1$, where $h=\\beta H$, $\\beta$ - the inverse temperature and $H$ - external magnetic field. For this purpose the method of transfer-matrix, and generalized Jordan-Wigner transformations, in the form introduced by the author in $\\cite{mkoch95}$, are applied.", "revisions": [ { "version": "v1", "updated": "1997-10-20T16:28:58.000Z" } ], "analyses": { "keywords": [ "external magnetic field", "3d ising model", "low-temperature asymptotics", "free energy", "wide range" ], "note": { "typesetting": "RevTeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }