{ "id": "cond-mat/9705101", "version": "v1", "published": "1997-05-12T08:44:13.000Z", "updated": "1997-05-12T08:44:13.000Z", "title": "Percolation on a Feynman Diagram", "authors": [ "D. A. Johnston", "P. Plechac" ], "comment": "LaTex, 5 pages + 3 ps figures", "categories": [ "cond-mat.stat-mech", "hep-lat" ], "abstract": "In a recent paper hep-lat/9704020 we investigated Potts models on ``thin'' random graphs -- generic Feynman diagrams, using the idea that such models may be expressed as the N --> 1 limit of a matrix model. The models displayed first order transitions for all q greater than 2, giving identical behaviour to the corresponding Bethe lattice. We use here one of the results of hep-lat/9704020 namely a general saddle point solution for a q state Potts model expressed as a function of q, to investigate some peculiar features of the percolative limit q -> 1 and compare the results with those on the Bethe lattice.", "revisions": [ { "version": "v1", "updated": "1997-05-12T08:44:13.000Z" } ], "analyses": { "keywords": [ "percolation", "models displayed first order transitions", "general saddle point solution", "generic feynman diagrams", "state potts model" ], "note": { "typesetting": "LaTeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1997cond.mat..5101J" } } }